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Summary

The investigator successfully obtained both theoretical and computational

results for the estimation of unknown variable parameters in nonlinear functional

and partial differential equations. Algorithms were developed to identify, from

experimental data, unknown variable time delays appearing in functional differential

equations and unknown variable coefficients (including boundary parameters and

initial conditions) appearing In moving boundary problems. These algorithms require

the discretization of infinite dimensional problems, in order to obtain

computationally tractable finite dimensional approximating parameter estimation

problems. The investigator proved theorems indicating that such approximating

problems yield relevant information for the original problem of interest. The

theoretical results were supplemented with numerical results obtained fr,-,m several

test problems.
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The general nature of the supported research was to develop methods for the

problem of estimating parameters in a variety of applications. All of the problems

considered involve models which are infinite dimensional (i.e. functional and partial

differential equations). Many applications areas give rise to a differential equation

model containing unknown parameters which one desires to estimate by fitting

experimental data to the model equation. The general approach is to replace the

original model equation with an approximating system of ordinary differential

equations, and estimate parameters within this computationally tractable model. The

aim, then, is to develop an approximation scheme which can be implemented

efficiently, and also to prove that the "approximate parameter estimates" converge

in some sense to a best-fit parameter for the original model.

Specifically the supported research, to be discussed in more detail below,

pertains to the estimation of discontinuous, spatially varying coefficients in

hyperbolic partial differential equations, the estimation of nonlinearities in parabolic

differential equations, the estimation of nonconstant delays in functional differential

equations and the estimation of parameters in moving boundary problems. In all

cases, the goal is to develop computational methods and prove a corresponding

convergence thoerem for the parameter estimation problem.

The final revisions were made on a paper (now accepted for publication)

representing research (joint work with P.K. Lamm of Michigan State University) on

the estimation of discontinuous coefficients in hyperbolic partial differential

equations ([11 of Publications arising under this period of support). This problem is

motivated by seismic exploration. The response of the earth to a disturbance can

be modeled in a simplified way by a one dimensional hyperbolic partial differential

equation. The model equation will contain parameters representing physical

characteristics of the earth, which are of great interest, but are often unknown. In

general, these parameters will be spatially varying, as the earth is inhomogeneous,

and possibly discontinuous. The problem then, is to identify these parameters based

on observations of the earth's response to a surface disturbance.

Mathematically, one has data which corresponds to evaluations of the

solution of the differential equation, and would like to find the parameters which

provide a solution to the model equations which best fits this data. Thus, one must
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obtain an estimate of a discontinuous function, including the location of the

discontinuity. The general approach taken here is similar to that of others (eg., [1],

[41); the best-fit parameters are characterized as the minimizers of a least squares

type fit to data. The original minimization problem is replaced by one in which the

solution of an approximating system of ordinary differential equations has replaced

the solution of the original partial differential equation. This approximate

minimization problem is then solved iteratively on the computer. Both the model

equations and the unknown parameters were approximated using splines. A computer

program was written to implement the approximation scheme, and tested with several

example problems. A convergence theory was simultaneously developed. This

theory guarantees that the sequence of parameter estimates generated using the

computationally attractive approximation scheme converges (in general,

subsequentially) to best-fit parameters for the original problem. The new

difficulty present in this problem is the unknown parameters are spatially varying,

with an unknown location of discontinuity.

Additionally during this period, work was concluded on the estimation of

nonlinear, state-dependent diffusion-type coefficients, and other nonlinearities in

parabolic partial differential equations (joint with H.T. Banks of Brown University),

resulting in a publication ([21 of Publications arising under this period of support).

Such problems are of interest, for example, in ecology, in that these equations can

be used to model insect population growth and dispersal. Some of this work was

used with field data gathered in experiments performed by P. Kareiva to estimate

unknown parameters occuring in a model for the interaction of ladybugs and aphids

[3].

Similarly to the hyperbolic problem discussed above, the parameter estimation

problem is posed as the minimization of a least-squares fit to data criterion which

involves the solution of partial differential equations. Here, the model equations

are a set of nonlinear coupled parabolic equations. The unknown parameters are

state-dependent "diffusion" coefficients, and "reaction" nonlinearities (i.e., unknown

nonlinear terms involving the states of the system). Again, similarly to the problem

discussed above, both the states of the system and all nonconstant unknowns are

approximated with splines. The difficult aspects of this problem are to prove a

convergence theorem for this type of nonlinear system, and to develop numerical
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schemes and convergence arguments for the estimation of nonlinear terms without

assuming an a priori parametrization. This problem was succesfully treated;

computational packages were developed and tested on several numerical examples,

and then applied to field data as mentioned earlier. In addition, a fairly general

theory was developed (general in the scope of nonlinearities which can be estimated

with these techniques).

The primary focus of the supported resarch has been, first, the development

of numerical schemes and corresponding theory for the estimation of time- and

state-dependent time delays in delay differential equations. Estimation of unknown

constant delays in functional differential equations had been considered by many

authors, for example, [2]. In the present work, the unknown parameter is a function,

so that an additional level of approximation is required. Moreover, as the state

space (on which the approximation algorithm is ultimately based) is intimately

related to the size of the delay, a variable delay leads naturally to the

consideration of a moving state-space. This introduces both theoretical and

numerical complexities. We have been successful in developing both theoretical

results and computational packages for this problem, and have generated several

numerical test examples.

As with the constant delay problem, one can set up the delay differential

equation abstractly, with states given by the current value of the solution in the

first component, and the solution history (a function defined on the interval [--r0],

where T is the delay) in the second component. Once r is allowed to be variable

(either time or state dependent), the second component begins to have a moving

domain. The approximation technique used is similar to that of [21; the interval

[-T,01 is divided into subintervals, and the functional part of the state is

approximated with splines (here, linear splines are used) defined on this grid. In the

current research, since T is variable, the approximations will move with time.

Three classes of nonconstant delay were considered: A delay which is an

unknown function of time only, a delay which is determined through a differential

equation which is coupled to the state equations, and a delay which is an unknown

function of the state variable. A complete convergence theory has been developed

for each of these three classes of delay. While the development of an estimation
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algorithm and the numerical implementation was very similar for all types of delay,

the theoretical treatment of each class was very different. Again, the approach in

proving convergence is much like that of [21, in spirit, but there is the added

difficulty of the moving approximations. While the definitions of the abstract

differential equation, state spaces, norms, approximations, and projection operators

are all formally similar, the fact of the variability in time (due to the variable

delay) makes the convergence arguments more difficult. For example, the identity

d Ix(t)12 = 2 << x(t), x(t)>> (an important tool in the convergence arguments of
dt

[21) must now be modified to include a term accounting for the variation in time of

the norm. This term contains the time derivative of T. It is necessary for the

convergence theorem to assume that T" satisfies + < I. This restriction is not

unnatural in many applications problems, and can be implemented in a

straightforward way in the case of T- =-(t). Ensuring that this condition holds

for the other two cases of delay was a delicate, very technical problem,

successfully resolved.

A further complication for the estimation of a variable delay is the

secondary level of approximation necessary in order to estimate a functional

unknown. The "true" function is replace by an approximation, also based on splines.

For the time-dependent delay case, if T is the final time of interest in the

problem, then one subdivides the interval [0,T] into equal subintervals, and defines

splines (any order can be used; we have used both linear and cubic) on this grid.

In the case of state dependent delay, one must choose, a priori, an estimate for the

largest state value to be the width of the interval of approximation. One then

estimates a spline-based approximate delay function. This secondary level of

approximation is much like that used for the estimation of functional coefficients in

partial differential equations (see for example [4], and [11 of Publications arising

under this period of support), and that used for the estimation of state-dependent

parameters in nonlinear partial differential equations (as in [21 of Publications

arising under this period of support).

In summary, a spline-based approximation scheme has been developed for the

estimation of variable delays in nonlinear functional differential equations. The

types of variable delays one encounters fall naturally into three classes (time-

dependent, implicitly state-dependent, and explicitly state-dependent). The scheme
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can also be used to estimate other unknown parameters, however this is a

straightforward modification of the work in (2], and is not new. A convergence

theorem has been proved for each of the three types of variable delay. It says

essentially that if one restricts the search for the unknown parameters to certain

parameter sets, then one is guaranteed that performing the minimization using

approximations will yield a sequence of parameter estimates that converge

subsequentially to a best-fit parameter for the original model equations. The

constraint set within which one must search is not unduly restrictive; it is common

in parameter estimation problems to require that the constraint set be compact. We

require compactness conditions and we additionally require the ±" be bounded below

one and have some lower bound. Again, this has an interpretation (causality) which

is not unnatural in many applications. Finally, we have developed a computational

package and used it to perform several numerical test examples. All of the above

will appear in [41 of Publications arising under this period of support, and some

examples and a brief discussion of the results can be found in (3) of Publications

arising under this period of support.

The second major goal of the sponsored research has been to extend the

ideas discussed above to the problem of estimating parameters in moving boundary

problems. Here, one has a parabolic partial differential equation defined on a domain

which moves in time. Thus, since a common approach is to approximate the solution

of a partial differential equation using splines defined on a partition of the domain,

it is natural to use approximations which move in time, just as was done with the

delay equations. In fact, the theoretical arguments become much easier if one first

transforms the problem (via a straightforward change of variables) to a problem on

a fixed spatial domain (the dynamics of this transformed problem are then more

complicated, and nonlinear, even if the original dynamics were linear). We began our

investigations by setting up moving approximations, but then performed the

theoretical analysis on the fixed-domain problem. Either way, (i.e., whether one

discretizes the original problem with moving elements, or transforms the problem to

the fixed domain first), one ultimately obtains the same numerical scheme.

The moving boundary problems we have considered are characterized by the

fact that the movement of the boundary is determined by an equation involving the
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state variable. Thus, such problems are formulated as a coupled system of a

parabolic partial differential equation (for the state) and an ordinary differential

equation (for the location of the boundary). It is this coupling which makes these

problems nonlinear. It is through this coupling that we have defined a class of

moving boundary problems which are amenable to theoretical analysis. The class of

problems for which we have obtained our convergence result is briefly

characterized by the following. After the change of variables (let U(t,y) represent

the new state variable, with the new spatial variable yE[0,11), we write the

dynamics for the movement of the boundary as s(t) = T(t, U, s) where s(t)

represents the location of the boundary at time t. The class of problems which we

have considered requires essentially that IT be continuous in U in the H'[0,11

topology. For this class of problems, we have developed an approximation scheme,

and proved a convergence theorem of the desired form (i.e., by solving the

parameter estimation problem using the approximate model equations, one obtains a

sequence of parameter estimates which converges subsequentially to a best-fit

parameter for the original model equations). These results are the subject of [5, 6,

7] of Pulications arising under this period of support. It is interesting to note that

our numerical scheme has been successful (in test numerical examples) for estimating

parameters in model equations which do not fit into our theoretical framework (such

as the Stefan problem and the Oxygen Diffusion problem).

As an example of a moving boundary problem which fits into the theoretical

framework of this research, consider the absorp.ion of pollutants on activated

carbon particles [5]. The model equation for the full problem is complicated; if one

considers only the activity surrounding a single carbon particle, then one can derive

a model equation which is a diffusion equation with a moving boundary. The

moving boundary arises due to the fact that a bacterial layer forms on the outside

of the carbon particle. In order for the pollutant to bind onto the carbon particle,

it must first pass through this layer. As the pollutant diffuses through the

bacterial layer, some of it is used by the bacteria as nutrient. The width of the

bacterial layer changes in time as the bacteria grows (due to feeding on the

pollutant) and is lost (due to death, shearing off into the surrounding fluid, etc.).

A simple model is thus a diffusion equation with standard boundary

conditions, but a changing spatial domain, [0, s(t)], where s(t) measures the width of

the biofilm layer. To make the problem well-posed, an additional condition is
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specified. This condition is of the form s(t) = F(t,x,u) dx, where u

represents the concentration of the pollutant and F is a nonlinear function

describing the dynamics of bacterial activity (i.e., F will describe how the

bacteria uses pollutant, rate of loss, etc.). After the change of variables to fixed

domain, this equation has the form s(t) = s(t)J F(t,y,U) dy. Under physically

reasonable assumptions on F, it has been shown that this equation satisfies the

assumptions we require for our theory. In [61 and [7] of Publications arising under

this period of support, more examples of applications satisfying our theoretical

assumptions can be found.

Once we transformed the problem to the fixed domain, our approximations

were performed in a straightforward manner. Approximating the state variable U

is standard (see, eg., [11); we then coupled the resulting system of ordinary

differential equations (the solution of which gives the approximate, UN) with the

given ordinary differential equation describing the dynamics for s. The original

dynamics for s involve U; we solved for an approximation sN, using the given

equation with UN substituted for U. Our key convergence result then involves

a statement of the form: For any convergent sequence of parameters qN-. q, it

follows that (UN(qN),sN(qN))-*(U(q),s(q)) in H' ( 0,1)XR. This result was technically

difficult to argue, but once established, it allowed us to argue that our parameter

estimates obtained under the approximations converge subsequentiall,' to a best-fit

for the problem of interest.

In addition to the moving boundary problem described above, the Stefan

problem (see, eg., [61) and a problem of Oxygen Diffusion (eg., [71) have also been

considered. The numerical package mentioned above has been modified to perform

several test examples of parameter estimation problems within these types of

equations (some of these examples appear in [31 and in [71 of Publications arising

under this period of support), however the convergence theory is more difficult due

to the fact that the extra condition (like i in the problem above) involves a

pointwise evaluation of a derivative of the state, u for the Stefan problem, and an

extra condition on u (rather than an equation for ) in the Oxygen Diffusion

problem. Current investigations center on proving a convergence theorem for this

type of moving boundary problem.
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Interactions:

During the 1986-1987 academic year, the investigator gave seminar talks about the
estimation of time- and state-dependent delays at North Carolina State University,
Duke University, and the University of North Carolina at Chapel Hill.

In July of 1987, the investigator was invited to participate in the Workshop for
Control and Identification at ICASE, NASA Langley Research Center, where she was
a Scientific Consultant. There she discussed her work on estimation of delays in
functional differential equations and parameter estimation in moving boundary
problems.

In October of 1987 the investigator gave a zontributed presentation entitled "A
Numerical Method for Parameter Estimation in Moving Boundary Problems" at the
SIAM 35th Anniversary Meeting in Denver, CO.

In December of 1987 the investigator gave an invited lecture entitled "Time-
Dependent Approximation Schemes for Some Problems of Parameter Estimation in
Distributed Systems", at the 26th IEEE Conference on Decision and Control in Los
Angeles, CA.

In July of 1988 the investigator gave a contributed presentation entitled "A
Numerical Method for the Estimation of Variable Time Delays with Applications to
Biology" at the SIAM Annual Meeting in Minneapolis, MN.

In August of 1988 the investigator attended the Brown/INRIA NSF Workshop on
Control and Identificaticn for Distributed Systems, at Brown University, where she
gave a talk entitled "Parameter Estimation in Moving Boundary Problems".

In September of 1988 the investigator gave a contributed presentation entitled "A
Numerical Method for Parameter Estimation in Moving Boundary Problems" at the
Virginia Tech-ICAM Conference on Numerical Solutions of Partial Differential
Equations, held at Virginia Polytechnic Institute in Blacksburg, VA..

During the 1988-1989 academic year, the investigator gave several seminar talks
about the estimation re" variable parameters in Moving Boundary problems, at North
Carolina State Univ-i ;.y, and the University of North Carolina at Chapel Hill.

In December of 1. Ale investigator gave an invited lecture entitled "Parameter
Estimation in Moving 3ot' idary Problems", at the 27th IEEE Conference on Decision
and Control in Auqttri,
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